PhysicsAndMathsTutor.com						
Please check the examination deta				didate infor	mation	
Candidate surname			Other names			
Pearson Edexcel International Advanced Level	Centre	Number		Candidat	e Number	
Sample Assessment Materials fo	or first te	aching S	eptember	2018		
(Time: 1 hour 30 minutes) Pape		Paper R	per Reference WMA13/01			
Mathematics						
International Advanced Level Pure Mathematics P3						
You must have: Mathematical Formulae and Sta	tistical T	ables, ca	lculator		Total Marks	

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 10 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over ▶

S59757A©2018 Pearson Education Ltd.
1/1/1/1/

Answer ALL questions. Write your answers in the spaces provided.

1. Express

$$\frac{6x+4}{9x^2-4} - \frac{2}{3x+1}$$

as a single fraction in its simplest form.

(4)

$$\frac{6x+4}{(3x+2)(3x-2)} \frac{2}{3x+1} \frac{2(3x+2)}{(3x+2)(3x-2)} \frac{2}{3x+1}$$

$$\frac{2}{3x-2} = \frac{2(3x+1)-2(3x-2)}{3x+2-6x+4} = \frac{6x+2-6x+4}{(3x-2)(3x+1)}$$

$$= \frac{6}{(3\chi-2)(3\chi+1)}$$

2.

$$f(x) = x^3 + 3x^2 + 4x - 12$$

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\frac{4(3-x)}{(3+x)}} \qquad x \neq -3$$
 (3)

The equation $x^3 + 3x^2 + 4x - 12 = 0$ has a single root which is between 1 and 2

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\frac{4(3-x_n)}{(3+x_n)}} \quad n \geqslant 0$$

with $x_0 = 1$ to find, to 2 decimal places, the value of x_1 , x_2 and x_3

(3)

The root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.272$ to 3 decimal places.

(2)

(a)
$$f(x) = x^3 + 3x^2 + 4x - 12 = 0$$

 $3x^2 = 12 - 4x - x^3$

$$3x^2 = 9(3-x) - x^3$$

$$3\chi^2 + \chi^3 = 4(3-\chi)$$

$$\frac{\chi^{2}(3+\chi)}{(3+\chi)} = \frac{4(3-\chi)}{(3+\chi)} \qquad \sqrt{\chi^{2}} = \frac{4(3-\chi)}{(3+\chi)}$$

$$x = \left(\frac{4(3-x)}{(3+x)}\right)$$

$$\chi_1 = \left(\frac{4(3-1)}{(3+1)} \right) = \sqrt{2} = 1.4$$

$$x_1 = (4(3-52)) = 1.20$$

(i) x = 1.2720	
	(121.5)3 . 0(121.6) . 12
	$(1.2715)^3 + 3(1.2715)^2 + 4(1.2715) - 12 = -8.21 \times 10$
	(1.2125)3+3(1.2125)2+1(1.2725)-12=8.27 x 10
	ide of sidn which implies that there is a roof in
between 1.2715	
1.2715 + 1.	2725 = 1.2720
2	
. **	
-fan	

3.

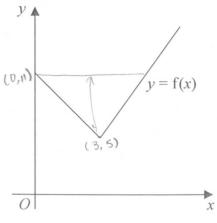


Figure 1

Figure 1 shows a sketch of part of the graph y = f(x) where

$$f(x) = 2|3-x|+5$$
 $x \ge 0$

(a) Solve the equation

$$f(x) = \frac{1}{2}x + 30$$
 (3)

Given that the equation f(x) = k, where k is a constant, has two distinct roots,

(b) state the set of possible values for k.

(2)

(a)
$$2|3-x|+5 = \frac{1}{2}x+30$$
 $-2(3-x)+5 = \frac{1}{2}x+30$
 $2(3-x)+5 = \frac{1}{2}x+30$ $-6+2x+5 = \frac{1}{2}x+30$
 $6-2x+5 = \frac{1}{2}x+30$ $\frac{13}{2}x = 31$
 $5/2x = -19$ $x = 62/3$
Since $x > 0$, $x = 62/3$

(b) f(x)= K has two distinct mote (i-e. 2 intersections)

turning point / vextex = (3,5)

y axis (x=0) 2(3-0)+5

2(3)+5=11 (0,11)

when k>11, root is negative

: k cannot be greater than Il

4. (i) Find

$$\int_{5}^{13} \frac{1}{(2x-1)} \, \mathrm{d}x$$

writing your answer in its simplest form.

(4)

(ii) Use integration to find the exact value of

$$\int_0^{\frac{\pi}{2}} \sin 2x + \sec \frac{1}{3} x \tan \frac{1}{3} x \, dx \tag{3}$$

(i)
$$\int_{5}^{13} \frac{1}{(2x-1)} = \frac{1}{2} \ln |2x-1|$$

$$\frac{1}{2\ln 25} - \frac{1}{2\ln 9}$$
 $\ln \left(\frac{25}{9}\right)^{1/2} = \ln \left(\frac{5}{3}\right)$

(ii)
$$\int_{0}^{\pi/2} \sin 2x + \sec 3x + \sin 3x$$

$$\sin 2x = -\cos 2x$$

$$\frac{1}{2} + 2\sqrt{3} = 1 + 4\sqrt{3}$$

$$\frac{2}{1 + 4\sqrt{3}} = \frac{5}{2} - 2 + 2\sqrt{3}$$

$$-\frac{1}{2}(0)(2 \times 0) + 3 \sec(\frac{1}{3} \times 0)$$

$$\frac{1}{2} = 2\sqrt{3} - 2$$

$$= 2\sqrt{3} - 2$$

Given that

$$y = \frac{5x^2 - 10x + 9}{(x - 1)^2} \qquad x \neq 1$$

show that $\frac{dy}{dx} = \frac{k}{(x-1)^3}$, where k is a constant to be found.

(6)

$$y = 5x^{2} - 10x + 9 - u \qquad du/dx = 10x - 10$$

$$(x-1)^{2} - v \qquad dv/dx \rightarrow 1et \ u = x-1 \ du/dx = 1$$

y = 42 dy/dv = 24

vdu/dx - udv/dx

1 x 2U = 2U

100

2(1-1)

$$(x-1)^{2}(10x-10)-(5x^{2}-10x+9)(2(x-1))$$

$$(x-1)[(x-1)(10x-10) - 2(5x^2-10x+9)]$$

$$x(10x-10)-1(10x-10)-10x_{5}+50x-18$$

$$\frac{10x_{5}-10x-10x+10-10x_{5}+50x-18}{x(10x-10)-1(10x-10)-10x_{5}+50x-18}=-8$$

$$\frac{dy}{dx} = \frac{-8}{(x-1)^3}$$
 $k = -8$

The functions f and g are defined by

$$f: x \mapsto e^x + 2$$
 $x \in \mathbb{R}$

$$g: x \mapsto \ln x$$
 $x > 0$

(a) State the range of f.

(1)

(b) Find fg(x), giving your answer in its simplest form.

(2)

(c) Find the exact value of x for which f(2x + 3) = 6

(4)

(d) Find f⁻¹ stating its domain.

(3)

(e) On the same axes sketch the curves with equation y = f(x) and $y = f^{-1}(x)$, giving the coordinates of all the points where the curves cross the axes.

(4)

(a) $f(x) = e^x + 2$

Range: f(x) > 2

$$g(x) = \ln x$$

$$e^{\ln x} + \lambda = \pi x + \lambda$$

$$+2=6$$
 2x + 311= 1n4

$$\frac{1 \cdot e^{2^{1} + 3}}{1 \cdot n \cdot e^{2^{1} + 3}} = 4 \cdot 6$$

$$N = 10.4 - 3$$
 $10.2 - 3/2$

Question 6 continued

7. The point P lies on the curve with equation

$$x = (4y - \sin 2y)^2$$

Given that P has (x, y) coordinates $\left(p, \frac{\pi}{2}\right)$, where p is a constant,

(a) find the exact value of p

(1)

The tangent to the curve at P cuts the y-axis at the point A.

(b) Use calculus to find the coordinates of A.

(6)

Equation of tengent

8. In a controlled experiment, the number of microbes, N, present in a culture T days after the start of the experiment were counted.

N and T are expected to satisfy a relationship of the form

$$N = aT^b$$
 where a and b are constants

(a) Show that this relationship can be expressed in the form

$$\log_{10} N = m \log_{10} T + c$$

giving m and c in terms of the constants a and/or b.

(2)

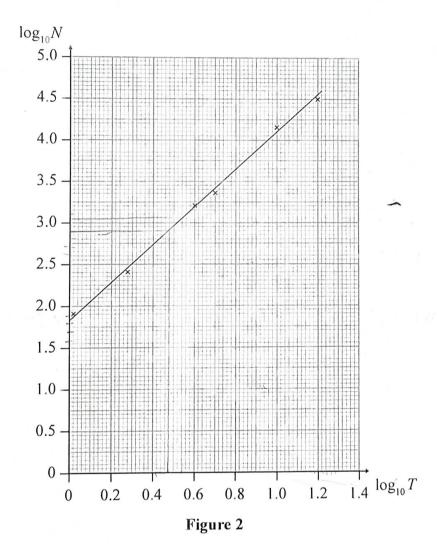


Figure 2 shows the line of best fit for values of $\log_{10} N$ plotted against values of $\log_{10} T$

- (b) Use the information provided to estimate the number of microbes present in the culture 3 days after the start of the experiment.

 (4)
- (c) With reference to the model, interpret the value of the constant a.

(1)

N = aTb	
lug N = logio aTb	No.
109,0 N = 109,0 a + 109,0T	b
logio N = logio a + blogioT	•
logio N = blogioT + logio	d,
m = p	
c = 10 g 10 a	
b) c= logio a = 1.84	(A)
101.84 = .69.	
	1192
(0, 1.84)(1.22, 4.6)	
4-6-1-84 133	
1-22-0 61	m = 2.26
14.5	
N = 69 183 (T)2.26	
N = 69.183 (3) 1.76	= 828.5 X
	after the
	after the larger of the experiment
	after the lay a stort of the experiment
	after the lay stort of the experiment
	after the lay stort of the experiment
	after the I day & Stort of the experiment
	after the I day & stort of the experiment
	after the I day & stort of the experiment
	after the I day & stort of the experiment
	after the I day & stort of the experiment
	after the I day & stort of the experiment
	after the I day & stort of the experiment
	after the lay stort of the experiment
	after the I day & Stort of the experiment

9. (a) Prove that

$$\sec 2A + \tan 2A \equiv \frac{\cos A + \sin A}{\cos A - \sin A} \qquad A \neq \frac{(2n+1)\pi}{4} \qquad n \in \mathbb{Z}$$
(5)

(b) Hence solve, for $0 \le \theta < 2\pi$

$$\sec 2\theta + \tan 2\theta = \frac{1}{2}$$

Give your answers to 3 decimal places.

(4)

(a) seczA + tanzA

$$1 = SIN^2A + COS^2A \qquad SIN^2A + WS^2A + 2SIN^2A$$

$$SIN^2A = 2SIN^2A + COS^2A - SIN^2A$$

$$COS^2A - SIN^2A \rightarrow SIN^2A$$

$$COS^2A - SIN^2A \rightarrow SIN^2A$$

(DS2A + SIN2A+2SINACOSA (COS)3A+2SINACOSA +SIN2A continuation COSA-SIMPA (COSA-SINA) (COSA+SINA)

$$\frac{(6) \cos A + \sin A}{\cos A - \sin A} = \frac{2\cos A + 2\sin A}{2\cos A + 2\sin A} = \frac{\cos A - \sin A}{2\cos A}$$

$$-3 tan A = 1$$

$$tan A = -\frac{1}{3}$$

$$-0.32175$$
= 2.8198, 5.9614
= 2.82, 5.96

a) ccosA + smA) ccosA + smA)	COSA + SIMA
(COSA + &MA)(COSA -SINA)	COSA - SINA
2 ((K)	20011
	8
	3
	1
	<i>h</i> -

10. The amount of an antibiotic in the bloodstream, from a given dose, is modelled by the formula

$$x = De^{-0.2t}$$

where x is the amount of the antibiotic in the bloodstream in milligrams, D is the dose given in milligrams and t is the time in hours after the antibiotic has been given.

A first dose of 15 mg of the antibiotic is given.

(a) Use the model to find the amount of the antibiotic in the bloodstream 4 hours after the dose is given. Give your answer in mg to 3 decimal places.

(2)

A second dose of 15 mg is given 5 hours after the first dose has been given. Using the same model for the second dose.

(b) show that the total amount of the antibiotic in the bloodstream 2 hours after the second dose is given is 13.754 mg to 3 decimal places.

(2)

No more doses of the antibiotic are given. At time T hours after the second dose is given, the total amount of the antibiotic in the bloodstream is $7.5 \,\mathrm{mg}$.

(c) Show that $T = a \ln\left(b + \frac{b}{e}\right)$, where a and b are integers to be determined.

(b)
$$0 = 15$$

 $t = 2$ $15e^{-0.2(2)} = 10.0548$ $15e^{-0.2(1)} = 3.69895$

*(c) $7.5 = 0e^{-0.2t}$ second dore is given 5 hours ofter the first dose

hours ofter $7.5 = 15 (e^{-0.2t} + e^{-0.2(t+5)})$ Me second $1/2 = e^{-0.2t} + e^{-0.2t} + e^{-0.2t}$ $1/2 = e^{-0.2t} + e^{-0.2t} + e^{-0.2t}$ $1/2 = e^{-0.2t} + e^{-0.2t} + e^{-0.2t}$ $1/2 = e^{-0.2t} + e^{-0.2t}$

Question 10 continued	Lea bla
Question to continued	
$e^{-0.2r} = (1 + e^{-1})$ $e^{-0.2r} = 11$	
2(1tel)	
e0.27 = 2(1+e-')	¥
$ ne^{0.2T} = n(x + 2e^{-1}) $	
$\frac{0.27 = \ln\left(2+2\right)}{0.2} = \frac{T=5\ln\left(2+2\right)}{e}$	
0.3	
0 2	
	_